BORGES Frédéric
- Statut : Maitre de conférences HDR
- Adresse mail : frederic.borges@univ-lorraine.fr
- Spécialité : Microbiologie, Génétique
- Téléphone : +33 (0)3 72 74 40 85
Activités :
Profiles:
https://fredericborges.netlify.app/
Je suis microbiologiste alimentaire à l'Université de Lorraine. Mes recherches portent sur l'ingénierie d’écosystèmes alimentaires fermentés. L'objectif de mes travaux est de concevoir de nouvelles approches d'ingénierie de cultures microbiennes pour l'industrie alimentaire. L'application visée est principalement la biopréservation, une approche durable pour augmenter la sécurité alimentaire et prolonger la durée de vie des aliments. Mon équipe a développé des approches de phénotypage à haut débit pour étudier le comportement des microorganismes candidats dans un espace multidimensionnel. L'ambition est de prendre en compte la complexité écosystémique des aliments afin d'obtenir des microbiomes alimentaires résistants à la colonisation par des microorganismes indésirables avec une grande robustesse.
Mots-clés : Aliment fermenté, fromage, produit laitier, ingénierie, écosystème microbien, biopréservation, bactériocine, criblage à haut débit, phénotypage à haut débit, génomique, métagénomique, bactéries lactiques.
FROMATION ACADEMIQUE
1999 – Licence de Biochimie, Université Henri Poincaré, Nancy
2000 – Maîtrise de Biochimie, Université Henri Poincaré, Nancy
2001 – DEA de Biochimie, Magistère de Microbiologie et Enzymologie, Université Henri Poincaré, Nancy
2005 – Doctorat de physiologie et génétique moléculaire, Université Henri Poincaré, Nancy
2019 – Habilitation à Diriger des Recherches (HDR), Université de Lorraine, Nancy
EXPERIENCE PROFESSIONELLE
2005-2007 - Postdoc sur la pathogénie moléculaire de Streptococcus agalactiae, Institut de Microbiologie et Biotechnologie, Université de Ulm, Allemagne
- Ingénierie génétique : expression hétérologue de protéine, construction de mutant
- Immunologie analytique : western blot, ELISA
- Interaction hôte-bactérie : culture de lignée cellulaire eucaryote, test d’adhésion et d’invasion
2007-2008 - ATER sur la diversité microbienne dans les fromages, Laboratoire de Science et Génie Alimentaire (LSGA), Université de Lorraine – ENSAIA
- Diversité microbienne : TTGE
Depuis 2008 : Maître de Conférences, Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine – ENSAIA
- Génomique : assemblage en environnement Galaxy, annotation et comparaison de génomes à l’aide de MicroScope Mage
- Diversité microbienne : MultiLocus Sequence Typing (MLST), identification taxonomique
- Structure de communauté : metabarcoding dans Galaxy et R
- Phénotypage et criblage haut débit : criblage de collections de bactéries, analyse de graphes d’inhibitions
- Analyse de données : manipulation et analyse statistique à l’aide du langage de programmation R
BREVET
BORGES Frédéric, REVOL-JUNELLES Anne-Marie, NOVEL STRAINS OF CARNOBACTERIUM MALTAROMATICUM AND USES THEREOF. WO2021078612 (A1). 2021-04-29.
PUBLICATIONS
2021
George, F., Mahieux, S., Daniel, C., Titécat, M., Beauval, N., Houcke, I., Neut, C., Allorge, D., Borges, F., Jan, G., Foligné, B., Garat, A., 2021. Assessment of Pb(II), Cd(II), and Al(III) Removal Capacity of Bacteria from Food and Gut Ecological Niches: Insights into Biodiversity to Limit Intestinal Biodisponibility of Toxic Metals. Microorganisms 9, 456. https://doi.org/10.3390/microorganisms9020456
Dos Santos Morais, R., Louvet, N., Borges, F., Dumas, D., Cvetkovska-Ben Mohamed, L., Barrau, S., et al. (2021). Impact of Lacticaseibacillus rhamnosus GG on the Emulsion Stability of Raw Milk. Foods 10, 991. https://doi.org/10.3390/foods10050991
Li, H., Ramia, N. E., Borges, F., Revol-Junelles, A.-M., Vogensen, F. K., and Leisner, J. J. (2021). Identification of Potential Citrate Metabolism Pathways in Carnobacterium maltaromaticum. Microorganisms 9, 2169. https://doi.org/10.3390/microorganisms9102169
2020
Dos Santos Morais, R., El-Kirat-Chatel, S., Burgain, J., Simard, B., Barrau, S., Paris, C., Borges, F., Gaiani, C., 2020. A Fast, Efficient and Easy to Implement Method to Purify Bacterial Pili From Lacticaseibacillus rhamnosus GG Based on Multimodal Chromatography. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.609880
Gomand, F., H. Mitchell, W., Burgain, J., Petit, J., Borges, F., E. Spagnolie, S., Gaiani, C., 2020. Shaving and breaking bacterial chains with a viscous flow. Soft Matter 16, 9273–9291. https://doi.org/10.1039/D0SM00292E
Nitschel, R., Ankenbauer, A., Welsch, I., Wirth, N.T., Massner, C., Ahmad, N., McColm, S., Borges, F., Fotheringham, I., Takors, R., Blombach, B., 2020. Engineering Pseudomonas putida KT2440 for the production of isobutanol. Eng. Life Sci. 20, 148–159. https://doi.org/10.1002/elsc.201900151
Ramia, N.E., Mangavel, C., Gaiani, C., Muller-Gueudin, A., Taha, S., Revol-Junelles, A.-M., Borges, F., 2020. Nested structure of intraspecific competition network in Carnobacterium maltaromaticum. Sci. Rep. 10, 1–9. https://doi.org/10.1038/s41598-020-63844-5
2019
Gomand, F., Borges, F., Burgain, J., Guerin, J., Revol-Junelles, A.-M., Gaiani, C., 2019. Food Matrix Design for Effective Lactic Acid Bacteria Delivery. Annual Review of Food Science and Technology 10, null. https://doi.org/10.1146/annurev-food-032818-121140
Gomand, F., Borges, F., Guerin, J., El-Kirat-Chatel, S., Francius, G., Dumas, D., Burgain, J., Gaiani, C., 2019. Adhesive Interactions Between Lactic Acid Bacteria and β-Lactoglobulin: Specificity and Impact on Bacterial Location in Whey Protein Isolate. Front Microbiol 10, 1512. https://doi.org/10.3389/fmicb.2019.01512
Iskandar, C.F., Cailliez-Grimal, C., Borges, F., Revol-Junelles, A.-M., 2019. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends in Food Science & Technology 88, 121–132. https://doi.org/10.1016/j.tifs.2019.03.020
2018
Ramia, N.E., El Kheir, S.M., Taha, S., Mangavel, C., Revol-Junelles, A.M., Borges, F., 2018. Multilocus sequence typing of Carnobacterium maltaromaticum strains associated with fish disease and dairy products. J. Appl. Microbiol. https://doi.org/10.1111/jam.14127
El Kheir, S.M., Cherrat, L., Awussi, A.A., Ramia, N.E., Taha, S., Rahman, A., Passerini, D., Leroi, F., Petit, J., Mangavel, C., Revol-Junelles, A.-M., Borges, F., 2018. High-Throughput Identification of candidate strains for biopreservation by using bioluminescent Listeria monocytogenes. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.01883
George, F., Daniel, C., Thomas, M., Singer, E., Guilbaud, A., Tessier, F.J., Revol-Junelles, A.-M., Borges, F., Foligné, B., 2018. Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.02899
Gomand, F., Borges, F., Salim, D., Burgain, J., Guerin, J., Gaiani, C., 2018. High-throughput screening approach to evaluate the adhesive properties of bacteria to milk biomolecules. Food Hydrocolloids 84, 537–544. https://doi.org/10.1016/j.foodhyd.2018.06.038
Guerin, J., Soligot, C., Burgain, J., Huguet, M., Francius, G., El-Kirat-Chatel, S., Gomand, F., Lebeer, S., Le Roux, Y., Borges, F., Scher, J., Gaiani, C., 2018. Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell. Colloids and Surfaces B: Biointerfaces 167, 44–53. https://doi.org/10.1016/j.colsurfb.2018.03.044
2017
Iskandar, C.F., Borges, F., Taminiau, B., Daube, G., Zagorec, M., Remenant, B., Leisner, J.J., Hansen, M.A., Sørensen, S.J., Mangavel, C., Cailliez-Grimal, C., Revol-Junelles, A.-M., 2017. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium. Front. Microbiol. 8. https://doi.org/10.3389/fmicb.2017.00357
Guerin, J., Burgain, J., Borges, F., Bhandari, B., Desobry, S., Scher, J., Gaiani, C., 2017a. Use of imaging techniques to identify efficient controlled release systems of Lactobacillus rhamnosus GG during in vitro digestion. Food Funct. https://doi.org/10.1039/C6FO01737A
Guerin, J., Petit, J., Burgain, J., Borges, F., Bhandari, B., Perroud, C., Desobry, S., Scher, J., Gaiani, C., 2017b. Lactobacillus rhamnosus GG encapsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. Journal of Food Engineering 193, 10–19. https://doi.org/10.1016/j.jfoodeng.2016.08.008
2016
Rahman, A., El Kheir, S.M., Back, A., Mangavel, C., Revol-Junelles, A.-M., Borges, F., 2016. Repeat-based Sequence Typing of Carnobacterium maltaromaticum. International Journal of Food Microbiology 226, 1–4. https://doi.org/10.1016/j.ijfoodmicro.2016.03.003
Remenant, B., Borges, F., Cailliez-Grimal, C., Revol-Junelles, A.-M., Marché, L., Lajus, A., Médigue, C., Pilet, M.-F., Prévost, H., Zagorec, M., 2016. Draft Genome Sequence of Carnobacterium divergens V41, a Bacteriocin-Producing Strain. Genome Announc. 4, e01109-16. https://doi.org/10.1128/genomeA.01109-16
Iskandar, C.F., Cailliez-Grimal, C., Rahman, A., Rondags, E., Remenant, B., Zagorec, M., Leisner, J.J., Borges, F., Revol-Junelles, A.-M., 2016. Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum. Food Microbiology 58, 79–86. https://doi.org/10.1016/j.fm.2016.03.008
Guerin, J., Bacharouche, J., Burgain, J., Lebeer, S., Francius, G., Borges, F., Scher, J., Gaiani, C., 2016. Pili of Lactobacillus rhamnosus GG mediate interaction with β-lactoglobulin. Food Hydrocolloids 58, 35–41. https://doi.org/10.1016/j.foodhyd.2016.02.016
2015
Back, A., Borges, F., Mangavel, C., Paris, C., Rondags, E., Kapel, R., Aymes, A., Rogniaux, H., Pavlović, M., van Heel, A.J., Kuipers, O.P., Revol-Junelles, A.-M., Cailliez-Grimal, C., 2015. Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC. Microbial Biotechnology n/a-n/a. https://doi.org/10.1111/1751-7915.12285
2014
Rahman, A., Gleinser, M., Lanhers, M.-C., Riedel, C.U., Foligné, B., Hanse, M., Yen, F.T., Klouj, A., Afzal, M.I., Back, A., Mangavel, C., Cailliez-Grimal, C., Revol-Junelles, A.-M., Borges, F., 2014b. Adaptation of the lactic acid bacterium Carnobacterium maltaromaticum LMA 28 to the mammalian gastrointestinal tract: From survival in mice to interaction with human cells. International Dairy Journal 34, 93–99. https://doi.org/10.1016/j.idairyj.2013.07.003
Rahman, A., Cailliez-Grimal, C., Bontemps, C., Payot, S., Chaillou, S., Revol-Junelles, A.-M., Borges, F., 2014b. High genetic diversity among strains of the unindustrialized lactic acid bacterium Carnobacterium maltaromaticum in dairy products as revealed by multilocus sequence typing. Appl. Environ. Microbiol. 80, 3920–3929. https://doi.org/10.1128/AEM.00681-14
Burgain, J., Scher, J., Francius, G., Borges, F., Corgneau, M., Revol-Junelles, A.M., Cailliez-Grimal, C., Gaiani, C., 2014. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components. Adv Colloid Interface Sci 213, 21–35. https://doi.org/10.1016/j.cis.2014.09.005
2013
Cailliez-Grimal, C., Chaillou, S., Anba-Mondoloni, J., Loux, V., Afzal, M.I., Rahman, A., Kergourlay, G., Champomier-Vergès, M.-C., Zagorec, M., Dalgaard, P., Leisner, J.J., Prévost, H., Revol-Junelles, A.-M., Borges, F., 2013. Complete Chromosome Sequence of Carnobacterium maltaromaticum LMA 28. Genome Announc 1. https://doi.org/10.1128/genomeA.00115-12
Afzal, M.I., Gonzalez Ariceaga, C.C., Lhomme, E., Kamel Ali, N., Payot, S., Burgain, J., Gaiani, C., Borges, F., Revol-Junelles, A.M., Delaunay, S., Cailliez-Grimal, C., 2013. Characterization of Carnobacterium maltaromaticum LMA 28 for its positive technological role in soft cheese making. Food Microbiol 36, 223–30.
2012
Afzal, M.I., Delaunay, S., Paris, C., Borges, F., Revol-Junelles, A.M., Cailliez-Grimal, C., 2012. Identification of metabolic pathways involved in the biosynthesis of flavor compound 3-methylbutanal from leucine catabolism by Carnobacterium maltaromaticum LMA 28. International journal of food microbiology 157, 332–9.
Jacquet, T, Cailliez-Grimal, C., Borges, F., Gaiani, C., Francius, G., Duval, J.F.L., Waldvogel, Y., Revol-Junelles, A.-M., 2012. Surface properties of bacteria sensitive and resistant to the class IIa carnobacteriocin Cbn BM1. J. Appl. Microbiol. 112, 372–382. https://doi.org/10.1111/j.1365-2672.2011.05195.x
Jacquet, Thibaut, Cailliez-Grimal, C., Francius, G., Borges, F., Imran, M., Duval, J.F.L., Revol-Junelles, A.-M., 2012. Antibacterial activity of class IIa bacteriocin Cbn BM1 depends on the physiological state of the target bacteria. Res. Microbiol. 163, 323–331. https://doi.org/10.1016/j.resmic.2012.04.001
2011
Samen, U., Heinz, B., Boisvert, H., Eikmanns, B.J., Reinscheid, D.J., Borges, F., 2011. Rga is a regulator of adherence and pilus formation in Streptococcus agalactiae. Microbiology (Reading, Engl.) 157, 2319–2327. https://doi.org/10.1099/mic.0.044933-0
2010
Afzal, M.I., Jacquet, T., Delaunay, S., Borges, F., Millière, J.-B., Revol-Junelles, A.-M., Cailliez-Grimal, C., 2010. Carnobacterium maltaromaticum: identification, isolation tools, ecology and technological aspects in dairy products. Food Microbiol. 27, 573–579. https://doi.org/10.1016/j.fm.2010.03.019
2009
Serhan, M., Cailliez-Grimal, C., Borges, F., Revol-Junelles, A.M., Hosri, C., Fanni, J., 2009. Bacterial diversity of Darfiyeh, a Lebanese artisanal raw goat’s milk cheese. Food Microbiol 26, 645–52.
Layec, S., Gérard, J., Legué, V., Chapot-Chartier, M.-P., Courtin, P., Borges, F., Decaris, B., Leblond-Bourget, N., 2009. The CHAP domain of Cse functions as an endopeptidase that acts at mature septa to promote Streptococcus thermophilus cell separation. Mol. Microbiol. 71, 1205–1217. https://doi.org/10.1111/j.1365-2958.2009.06595.x
2007
Samen, U., Eikmanns, B.J., Reinscheid, D.J., Borges, F., 2007. The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells. Infect. Immun. 75, 5405–5414. https://doi.org/10.1128/IAI.00717-07
2006
Borges, F., Layec, S., Fernandez, A., Decaris, B., Leblond-Bourget, N., 2006. High genetic variability of the Streptococcus thermophilus cse central part, a repeat rich region required for full cell segregation activity. Antonie Van Leeuwenhoek 90, 245–255. https://doi.org/10.1007/s10482-006-9079-5
Fernandez, A., Borges, F., Gintz, B., Decaris, B., Leblond-Bourget, N., 2006. The rggC locus, with a frameshift mutation, is involved in oxidative stress response by Streptococcus thermophilus. Arch. Microbiol. 186, 161–169. https://doi.org/10.1007/s00203-006-0130-8
Choulet, F., Gallois, A., Aigle, B., Mangenot, S., Gerbaud, C., Truong, C., Francou, F.-X., Borges, F., Fourrier, C., Guérineau, M., Decaris, B., Barbe, V., Pernodet, J.-L., Leblond, P., 2006. Intraspecific Variability of the Terminal Inverted Repeats of the Linear Chromosome of Streptomyces ambofaciens. J. Bacteriol. 188, 6599–6610. https://doi.org/10.1128/JB.00734-06
2005
Borges, F., Layec, S., Thibessard, A., Fernandez, A., Gintz, B., Hols, P., Decaris, B., Leblond-Bourget, N., 2005. cse, a Chimeric and variable gene, encodes an extracellular protein involved in cellular segregation in Streptococcus thermophilus. J. Bacteriol. 187, 2737–2746. https://doi.org/10.1128/JB.187.8.2737-2746.2005
2004
Thibessard, A., Borges, F., Fernandez, A., Gintz, B., Decaris, B., Leblond-Bourget, N., 2004. Identification of Streptococcus thermophilus CNRZ368 genes involved in defense against superoxide stress. Appl. Environ. Microbiol. 70, 2220–2229.
Fernandez, A., Borges, F., Thibessard, A., Gintz, B., Decaris, B., Leblond-Bourget, N., 2004a. Characterisation of Streptococcus thermophilus CNRZ368 oxidative stress-resistant mutants: involvement of a potential Rgg-like transcriptional regulator. Le Lait 84, 77–85. https://doi.org/10.1051/lait:2003043
Fernandez, A., Thibessard, A., Borges, F., Gintz, B., Decaris, B., Leblond-Bourget, N., 2004b. Characterization of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368. Arch. Microbiol. 182, 364–372. https://doi.org/10.1007/s00203-004-0712-2
2002
Josse, D., Ebel, C., Stroebel, D., Fontaine, A., Borges, F., Echalier, A., Baud, D., Renault, F., Maire, M. le, Chabrières, E., Masson, P., 2002. Oligomeric States of the Detergent-solubilized Human Serum Paraoxonase (PON1). J. Biol. Chem. 277, 33386–33397. https://doi.org/10.1074/jbc.M200108200